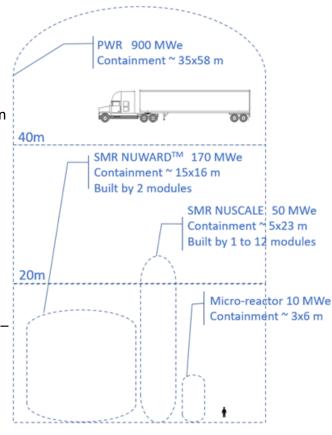
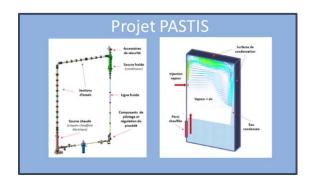


Fraternité

SMALL MODULAR REACTORS : DIFFÉRENTES TECHNOLOGIES ET RISQUES ASSOCIÉS

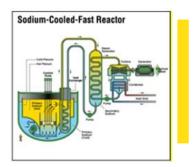

Réunion plénière du HCTISN 28 mars 2024

SMR ou réacteurs modulaires de faible puissance... De quoi s'agit-il?


- Réacteurs de faible puissance (< 300 MWe), compacts
- Modulaires au sens où ils sont en grande partie assemblés en usine
- Certains concepts proposent l'installation de plusieurs réacteurs (ou « modules ») au sein d'une même installation
- Applications diversifiées (chauffage urbain, production d'eau douce, d'hydrogène...)
- Flexibilité (sites isolés, mix variés, mise en réseau...)
- Rentabilité économique basée sur la standardisation et l'effet de série
- Des technologies bien connues, d'autres moins (AMR réacteurs innovants)
- ~ 100 modèles de SMR/AMR proposés dans le monde, dont la maturité est très variable quelques réalisations (Akademik Lomonosov, HTR-PM)
- L'IRSN participe depuis une dizaine d'années aux réflexions menées à l'international sur les exigences applicables aux SMR dans divers cadres

Réacteurs modulaires à eau légère

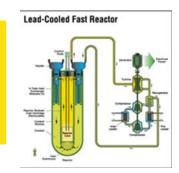
- Compacité
- Pilotage sans bore
- Refroidissement du cœur en situation accidentelle assuré par des systèmes passifs autonomie + moindre sensibilité aux pertes totales de sources électriques
- Enceinte métallique immergée dans un bassin d'eau (maintien du refroidissement du cœur et du combustible entreposé)
- Maintien du corium (cœur fondu) en cuve en cas d'accident grave Limitation des conséquences à l'extérieur de l'installation



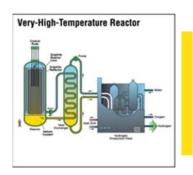
Enjeux de sûreté:

- Concept de réacteur intégré
- Contrôle de fabrication, inspection en service
- Démonstration de sûreté des systèmes passifs, disponibilité de codes de calcul qualifiés
 - Performances et fiabilité de ces systèmes
- Salle de commande mutualisée...

Réacteurs modulaires innovants (AMR) : une maturité variable, fonction notamment du retour d'expérience disponible


Réacteurs au sodium (RNR-Na)

■ Une vingtaine de réacteurs exploités (400 années-réacteur)

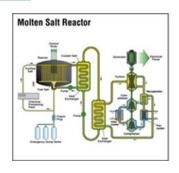

Expérience en France, aux US, au Japon, et en Russie essentiellement Réacteurs au plomb (RNR-Pb)

Pas de REX civil – projet
BREST en cours

Quelques réacteurs refroidis au LBE construits par l'URSS pour la propulsion de sous-marins militaires

4 CONCEPTS-TYPE ISSUS DES SYSTÈMES DE GÉNÉRATION IV

Réacteurs à haute température (HTR)


7 réacteurs (60 annéesréacteur)

2 réacteurs en exploitation en Chine (mise en service en décembre 2023)

Réacteurs à sels fondus

2 réacteurs construits aux Etats-Unis dans les années 50-60

Retour d'expérience sur les effets de corrosion du sel

Réacteurs modulaires innovants (AMR)

Des avantages en termes de sûreté et de radioprotection :

- Comportement naturellement sûr à l'égard de la perte des moyens de refroidissement pour les HTR
- Inertie thermique importante pour les RNR-Na, RNR-Pb
- Bonnes caractéristiques neutroniques des réacteurs à sels fondus
- Limitation de l'exposition des travailleurs pour les RNR-Na et les HTR

Des enjeux de sûreté spécifiques à la technologie employée :

- Maîtrise des réactions sodium-air et sodium-eau pour les RNR-Na
- Maîtrise du risque de corrosion des structures et cristallisation du sel pour les réacteurs à sels fondus
- Maîtrise du risque de corrosion des structures et d'érosion pour les réacteurs au plomb

Réacteurs modulaires innovants (AMR) : des questions de sûreté « génériques »

- Choix des matériaux (gaines de combustible, cuves, tuyauteries)
 - Températures élevées en régime nominal et/ou en situation accidentelle
 - Forte irradiation (neutrons rapides)
 - Effets corrosifs du caloporteur (pour les réacteurs au plomb et à sels fondus notamment)

Inspection en service

- Compacité, accessibilité des conceptions intégrées
- Opacité des caloporteurs (plomb, sels, sodium)

Comportement en accident grave

- Définition de l'accident grave (réacteurs à sels fondus, RNR-Pb, HTR)
- Comportement des structures et du combustible fondus (RNR-Na, RNR-Pb)
- Maîtrise des phénomènes pouvant conduire à des dégagements importants d'énergie, évaluation des rejets, y compris toxiques (Pb et ²¹⁰Po dans le cas des réacteurs au plomb)
- Maîtrise du corium à long terme (refroidissement et sous-criticité pour les réacteurs à neutrons rapides)

Nécessité d'acquérir des connaissances et d'innover pour définir les dispositions de conception et d'exploitation permettant la maîtrise des risques.

Fabrication et retraitement du combustible & Déchets

- Démonstration de la faisabilité des procédés de retraitement à apporter pour les réacteurs à sels fondus ou non encore acquise à l'échelle industrielle
- Filières de traitement et de stockage des déchets et du combustible usé à définir : graphite irradié, plomb, gaz de fission relâchés par les réacteurs à sels fondus, sels contaminés, combustibles à forte teneur résiduelle en actinides, etc.
- Question du risque de prolifération à traiter pour les réacteurs à sels fondus et les RNR (séparation des actinides)
- L'option de transmutation des actinides mineurs implique des risques accrus et des contraintes fortes sur les transports et les installations du cycle (exposition des travailleurs, dispositions de limitations...)

Conclusions

- Variété et diversité des concepts, plus ou moins innovants, chacun avec des enjeux de sûreté particuliers
- Des problématiques de sûreté « génériques » liées à la compacité des modèles, aux températures de fonctionnement, à l'évaluation des rejets radioactifs et toxiques en accident grave pour les AMR
- Aspects de sécurité et de non-prolifération à considérer à la conception, au même titre que la sûreté
- Appréciation des risques sur les systèmes nucléaires (réacteurs et cycles associés)
- Nécessité d'acquisition de connaissances pour justifier la sûreté des installations et réaliser les études en support, y compris pour les réacteurs à eau légère

Rappel : la sûreté des installations repose à la fois sur leurs caractéristiques intrinsèques et sur les dispositions de conception et d'exploitation mises en œuvre – il est nécessaire de réaliser une expertise approfondie de ces dispositions pour pouvoir se positionner sur la sûreté.

Pour en savoir plus...

RÉPUBLIQUE FRANÇAISE

Autorité de Sûreté Nucléaire

GROUPE PERMANENT D'EXPERTS
POUR LES RÉACTEURS
NUCLÉAIRES

Paris, le 16 avril 2014

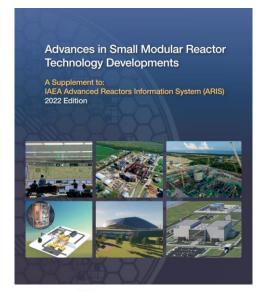
Le Président

Monsieur le Président de l'Autorité de sûreté

Ref : CODEP-MEA-2014-018663

bjet : Avis du Groupe Permanent « Réacteurs » du 10/04/2014

Systèmes nucléaires de 4ème génération


Monsieur le Président,

Je vous prie de bien vouloir trouver, en pièce jointe, l'avis du Groupe Permanent « Réacteurs » établi à l'issue de sa réunion du 10 avril 2014 sur les caractéristiques en termes de sûreté et de radioprotection des systèmes nucléaires de 4ème génération.

PJ : Avis

www.irsn.fr