PASSION FOR EXTREME LIGHT: LASER INITIATED TRANSMUTATION

Presented by **Prof. Gérard Mourou** Nobel Prize for Physics, 2018

Tajima-Mourou transmutator concept

Transmutation of TRansUranic Minor Actinide (Np, Am, Cm) spent nuclear waste with a technique based on ultrashort (<10fs) laser pulses. The mechanism of coherent acceleration of ions by laser (CAIL) is capable to produce 14 MeV neutrons with high yield driven by 100 keV deuterium acceleration via DT (or DD) fusion reactions, when sub-10fs, high repetition rate laser is used (SYLOS).

Novelty of the scheme: effcient generation of neutrons via ultrafast lasers (instead of nuclear reactors or accelerators).

The scheme is proposed by

T. Tajima and G. Mourou (Physics Nobel Laurate 2018)

i eli

How Much Pressure Does a PW Laser Exert?

1 PW/1µm spot size corresponds to 10²³ w/cm²

That is the equivalent of the pressure of 10 million Eiffel Towers on the tip of your finger!!

Seriously extreme!

Chirped Pulse Amplification

D. Strickland and G. Mourou 1985

Grating pair: Pulse stretcher

Stretched pulse

Amplified short pulse

ويوجع والمنافقة فالمتحد المحادث والمحاد

Laser Exploration : From Atomic to Sub-Atomic

Extreme light Laser is capable to produce, 1. the largest peak power, 2. the largest temperature, 3. the largest pressure, 4. largest acceleration, 5. the largest field.

It is a universal source of High Energy Particles and Radiations

light materialisation

Extreme Light Infrastructure - ELI

The Largest Civilian Laser Infrastructure Initiated and Coordinated(PP) by, G. Mourou (EP) ELI (Delivery Consortium) W. Sandners

IIIII di

Zeta-Exawatt nce Technolo

ZEST

Czech Republic

Hungary

Romani

Thin Film Pulse Compression

Fig. 4 shows the successive spectra and pulse durations corresponding to the laser out put, after the first stage and second stage. After the first stage the pulse 6.4fs, after the second stage the pulse is shrunk to 2.1fs

Giant wakefield acceleration *Tajima et Dawson (1979)*

laser pulse

plasma

supersonic gas jet

laser pulse

plasma wave

electrons

High Energy beam GeV/cm

Outlook for Laser-Particle acceleration TeV

Laser wakefield X-ray, 1cm

a state to see all

EMS

Microwave cavity

Low Hanging Fruit: High Energy Proton GeV Generation

NUCLEAR TRANSMUTATION CONCEPT

How to Transmute MA and LLFP

Applications of Single Cycle to Proton Generation vs a₀

Projet MYRRHA

RELATIVISTIC PROTON ACCELERATOR for TRANSMUTATION

LASER INITIATED TRANSMUTATION

Here we assume variety of efficiencies. The final result is the **electrical power out is 132 MW** and **electrical power to laser is 392 MW** and we can transmute 173 kg of transuraniums

Comparison with MYRRHA. Here we are assuming **perfectly** efficient process for MYRRHA and LIT. On this scale we are 60 times more efficient.

The most idealized case of LIT: In this case we require only 0.03 MW power into the laser to obtain 120 MW out to transmute 155 kg of transuraniums.

Name	Value	Unit	Description
Laser intensity	8. × 10 ¹⁷	W/cm ²	Peak intensity
Laser wavelength	800	nm	
Laser spot size	5	μm	Focal spot at 1/e ²
Laser pulse length	50.	fs	Laser pulse
Laser energy	0.015708	J	Energy delivered in one pulse
Num. neutrons	2.07345 × 10 ⁷	Ħ	# of neutrons produced in one pu
Laser rep. rate	100 000	rep/s	Laser repetition rate
Num. of fibers	100 000	Ħ	Number of fibers
Source neutron power	0.464453	MW	Source neutron power
Source neutron rate	2.07345 × 10 ¹⁷	n/s	Source neutron rate
Total neutron rate	1.3823 × 10 ¹⁹	n/s	Total neutron rate incl. 1/(1-k _{keft}
Total neutron power	30.9635	MW	Total neutron power incl. 1/(1-kke
# neutrons per fission	2.1	n/fission	# of neutrons released in fission e
keff	0.985	Ħ	Multiplicative factor
Energy per fission	210	MeV	Released energy per fission
Laser to deuteron efficiency	0.2	Ħ	Conversion efficiency from laser to de
Deuteron to neutron efficiency	0.0004	#	Conversion efficiency from deuteron to
Foil density	3.3 × 10 ²³	1/cm ³	
Foil thickness	10.	nm	
a0	0.60821		
sigma	2.36515		= $n_e * D/(n_c * \lambda_L)$
Thermal efficiency	0.6	Ħ	Conversion efficiency from molten salt to
Laser efficiency	0.4	Ħ	Conversion efficiency from electricity
Core thermal power	221.168	MWth	Core power generated by fissio
Core electrical power OUT	132.701	MWe	Electrical power generated by fiss
Laser power needed	157.08	MW	Laser power needed to generate ne
Electricity IN to generate laser	392.699	MWe	Electrical power needed to generate
We can transmute	173.07	kg of TRU in year	kg of TRU in year
This operation requires	32.6238	grams/year	grams of tritium per year

Number of neutrons	1.875 × 10 ¹⁷	n/s	Number of neu
Required power	0.6	MW	Required pov
We can transmute	156.506	kg of TRU in year	We can transr

utrons	1.86611 × 10 ¹⁷	n/s
wer	0.0113097	MW
mute	155.763	kg of TRU in year

Initial aim: go for a prototype of a laser based transmutator

Laser based transmutator – The initial approach

lacor	nout	tron	mon	itor
Lasci.	ncu			

Ν	leu	tr	on	ic	S

Laser-driven neutron, monitor

(Mourou)

Demonstration of CAIL

Team: EP, ELI, Thales, TAE

(Gales)

MA transmutation Pu + MA

Various composition of wastes, design of the system

Team: TAE (Google), CEA, Orano, EDF, CNRS

Wall materials

(Massard)

Carbon-based: invented

Immerse into molten salt and reactor to test

Team : TAE, UWM, UCI, CEA, Orano, EDF

Initial approach **Pillars and tasks**

PI: T Tajima

Chemistry

(Serp, Delpech)

Separation in liquid

Solvent choice

Team: CEA, CNRS, Orano

CAN Coherent Amplification Network High Peak Power, Average power, Efficiency G. Mourou, W. Brocklesby, J. Limpert, T. Tajima, Nature Photonics April 2013

« The future of Acceletaor is Fiber »

Compact, Safe, Mobile, Liquid TRANSMUTATOR of Spent Nuclear Waste

Spent nuclear waste and FLiBe solution input

> Nuclear waste concentration in each tank depends on Rail transports FRC laser monitor

Transmuted nuclear waste chemically separated and OUT

EXTREME LIGHT: NUCLEAR TRANSMUTATION For the greatest benefit to human kind (Alfred Nobel)

The radiotoxicity of the spent nuclear fuel may be reduced from the level of no reprocessed case to a level reduced by about 1000 times if we transmute the spent fuel. This is why the substantial benefit may be gained by the transmutation.

Aim:

Experimental demonstration of transmutation of TransUranic Minor Actinide (Np, Am, Cm) spent nuclear waste with a technique based on ultrashort laser pulses.

The mechanism of coherent acceleration of ions by laser (CAIL) is capable of producing 14 MeV neutrons with high yield driven by 100 keV accelerated deuterons via DT or DD fusion reactions, when a sub-8fs, high repetition rate laser is used (SYLOS).

Tasks:

T1 Deuteron acceleration by few cycle laser pulses M11 Demonstration of the CAIL scheme with the SYLOS Experimental Alignment laser (10 Hz) M12 Development a deuteron accelerator with the SYLOS laser (1 kHz)

T2 Generation of fusion neutrons with accelerated deuterium

T3 Transmutation of TRU spent nuclear waste to safe radiotoxicity levels and volumes via neutrons genertated with the SYLOS laser (1 kHz)

EXTREME LIGHT: TRANSMUTATION of NUCLEAR WASTE For the greatest benefit to human kind (Alfred Nobel)

Nuclear fission reactors generate a stream of radioactive nuclides of the spent fuel waste: in United States alone 90,000 metric tons requires disposal, and by 2020 the worldwide spent nuclear waste inventory will reach 200,000 metric tons, with 10,000 tons added each year. For example, nuclear power accounts for 77% of electricity in France, making the need for transmutation increasingly important.

